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%{ - ABSTRACT
% V‘l'hh paper is concerned with a singular perturbation analysis of the two-

| dimensional steady state semiconductor equations and of the usual finite
: difference scheme consisting of the five point discretization of Poisson's
equation and of the Scharfetter—G jglscrotization of the continuity
equations. By appropriate scaling e transform the semiconductor equations
into a singularly perturbed elliptic system with nonsmooth data. The singular
perturbation parameter is defined as the minimal Debeye-length of the device
under consideration. Singular perturbation theory allows to distinguish
between the regions of strong and of weak variation of solutions, so called
layers and smooth regions, and to describe solutions gualitatively in these
regions. This information is used to analyze the stability and convergence of
' the discretization scheme. Particular emphasis is put on the construction of
efficient grids. It is shown that the Scharfetter-Gummel method is uniformly
convergent, i.e. the global error contribution coming from the continuity
equations is small when the maximal mesh size is small, independent of the
gradient of the solution. Layer jumps are automatically resolved. The five
point scheme not uniformly convergent.y Large gradients of
80 ons require a graded mesh if solut.ons inside the layers are to be
resolved accurately. 1: ead to an intolerably large number of
* Therefore, #352 nt a modification of the five point scheme
which is uniformly convergent. .-
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SIGNIFICANCE AND EXPLANATION

It is well known that potential and carrier distributions in a
semiconductor device can be mathematically described as a system of three
elliptic partial differential equations subject to mixed Neumann and Dirichlet
boundary conditions. The dependent variables are the slectrostatic potential
and the hole and carrier densities. We show, after scaling the variables
appropriately, that this system is singularly perturbed; this means that
second order partial derivatives are multiplied by a small parameter. The
physical interpretation of this parameter is the Debeye~length )b of the
semiconductor device under consideration.

Asymptotic analysis (for XD + 0) allows to make gqualitative statements
about the solutions. 1In particular regions of fast variation ('layers') and
regions of slow variation of the solutions can be identified and solutions can
be separately described in both types of regions.

We use this information to investigate the properties of a widely used
discretization scheme of the semiconductor equations. Particular emphasis is

given to the construction of grids which allow an efficient numerical solution

of the discretized problem. (ches”i =
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A SINGULAR PERTURBATION APPROACH FOR THE ANALYSIS
OF THE FUNDAMENTAL SENM:CONDUCTOR EQUATIONS

Peter A. Harkovich', Christian A. Ringhofer and Siegfried 8¢1berhcrr'
1. INTRODUCTION

In this paper we present a singqular perturbation analysis of the two-
dimensional steady state semiconductor equations and of the finite difference
method used h& Frang et al. (1982). The singular perturbation approach works
as follows. The carrier densities, the doping profile and the independent
variables are scaled to (maximally) 0(1) such that Poisson's equation
assumes the form
(1.1) Moy =0, (xy) en
where 0., p' is the scaled potential and space charge resp. and ns is a
dowmain in l? of diameter 0(1) representing the device geometry after
scaling. A is the dimensionless minimal Debeye length which is small if the
maximum of the absolute value of the doping profile is large. This is the
usual situation for modern devices. Therefore, equation (1.1) subjected to
mixed Dirichlet~Neumann boundary conditions and supplemented by the scaled
continuity equations, represents a singularly perturbed elliptic boundary
value problem (see Fife (1973)) which can be analysed by adapting well-known
asymptotic methods {(like matched asymptotic expansions). This was done for
the one~dimensional static semiconductor equations by D. Smith (1980),
Markowich et al. (1982a,b), Vasilieva and Stelmakh (1977). It turns out that

in every closed subset of ﬂ., where the doping profile varies ‘'moderately’,

*Institut fuer Angewandte and Numerische Mathematik, Technische Universitaet
Wien, Gusstraustrasse 27-29, A-1040 Wien, Austria.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. m8-7927°62, Mod. 2.
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the golutions of the semiconductor equations are approximated uniformly up to
0(A) by smooth, slowly varying functions which are independent of ) and
which fulfill the 'reduced' equations obtained by setting A =0 in (1.1).
Between these subsets there is a curve across which the reduced solutions have
a jump~discontinuity. Physically, this curve is the junction between
differently doped regions of the device. We derive equations for the limits
of the reduced solutions as the independent variables tend to the junction
from both sides and show that the jumps of the reduced carrier densities
depend exponentially on the potential drop across the junction.

Close to this junction, that is in sets where the doping profile varies
strongly, there are thin regions (of width 0(Alfn)])) of rapid variation of
the potential and the carrier densities, so called internal layers. Within
these layers, the solutions are qualitatively and quantitatively described by i

the solution of the layer equation, which is a second order ordinary

differential equation. The i-th derivatives in perpendicular direction to the
junction are of the order of magnitude X-i.

The analysis shows that even large changes of the doping profile within
layer regions only cause 0(1A) changes of the solution outside the layer
regions. This property of the semiconductor equations carries over to the

discretization scheme. It causes discretization errors occurring in the

layers to decay rapidly.

y We also show that the electron and hole current density component, which
ol
. is perpendicular to the junction, does not exhibit layer behaviour, while
) layers may very well occur in the tangential components.
o Boundary layers can occur where the reduced solutions do not fulfill the
i
boundary conditions asymptotically (as A + 0+). This happens for example at
-z-
5;{;:7 : 4 ;¥§§!§§¥'5ﬁ7:f'#;;& o ‘ X :
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oxide~semiconductor interfaces (for MOS~transistors) and as Schodsky contacts
but not at Ohmic contacts and isolating boundaries.

Using the qualitative and quantitative information on the solutions of
the semiconductor equations we analyse the widely used difference acheme which
is obtained by discretizing the Laplace operator by the usual five point
formula and by applying the Scharfetter~Gummel (1969) discretization to the
continuity equations. Due to the strongly different bshavior of the potential
and the carrier densities inside and outside layer regions it is apparent that
the construction of grids has to be done with particular care.

We demongtrate, that the chosen discretization of the continuity
equations is uniformly convergent, which means that for every grid G the
global discretization error e(G) fulfills the estimate
(1.2) e(G) < const.(h + k + A{fn A|)
where ﬁ,i are the maximal mesh sizes in x and y directions resp. and the
constant in (1.2) is independent of the grid and of A. The Scharfetter-
Gummel scheme resolves layer-jumps accurately, even without using a fine grid
inside layer regions.

Contrary to thia, the five-point discretization of Poisson'’s equation is
not uniformly convergent. The linearized scheme is uniformly stable (i.e. has
an inverse which is bounded independently of the grid and of 1), but large
discretization errors within layer regions can destroy uniform convergence,
particularly when O0()A)-mesh sizes are chosen.

Therefore, in order to achieve a certain given (global) error tolerance,
it is necessary and sufficient to control the grid (only) for Poisson's

equation, since the error-contribution from the continuity equations only

depends on the maximal grid sizes and on A.
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We show that there are two possibilities of grid-control for the five~

point-formula. The first is a layer-ignoring grid. That means, all gria
sizes are chosen to be much larger than A which implies that only very few
mesh points are located within layer regions. We show, that for such a mesh,
the solutions of the discretization scheme of the semiconductor equations
converge to the reduced solution and we give an error estimate for this case.

Of course the choice of such a mesh only makes sense if one is not
interested in the solutions within layer regions.

Therefore we also derive a layer-resolving mesh, obtained by
equidistributing the local discretization error (see Markowich and Ringhofer
(1982¢c), Ascher and Weiss (1981, 1982)). The construction of this mesh is
based upon the fact, that the global error of the scheme is less or equal than
the (linear) stability constant times the maximal local discretization error.
This requires the information on the exact solution acquired by the singular
perturbation analysis.

The so obtained grid is coarse in regions where the solution is
approximated by the reduced solution and it is fine within layers in order to
balance large derivatives of solutions.

Storage restrictions normally allow to use the equidistributing mesh if
only vertical or horizontal junctions occur, however junctions, which are not
parallel to the x- or y-axis usually require too many grid points. In the
latter case a rigorous equidistribution is virtually impossible. The reason
for this is, that in the case of a horizontal or vertical junction only the
y or resp. x derivative is large (the perpendicular derivative is large,
not the tangential), and therefore only the y or resp. x~grid sizes have to be
chosen small compared to A while the mesh sizes tﬁ tangential direction may

be independent of A. If the junction is not aligned to the coordinate




system, all partial derivatives can get large, then the mesh sizes in both
directions have to be small compared to A within the layer. Nevertheless it
is not necessary to abandon this approach. We show, that even if too few
grid-points are placed inside such a layer the discrete solutions of the five
point formula are qualitatively correct inside layer regions and they are
qualitatively and quantitatively correct in ‘smooth' regions.

Since this situation is not completely satisfactory we present a
modification of the five~point-formula, which is uniformly convergent and
therefors does not require any grid-restrictions (except sufficiently small

E,i). Grid points can be placed wherever the solution is needed. Again, the
asymptotic results on the solutions are heavily used.

We also give an analysis of the 'finite boxes' approach (see Pranz et al.

(1982), which allows gridlines to terminate outside layer regions. ‘Missing’
difference quotients are approximated by interpolation. We show that
convergence is not influenced.

The presented analysis demonstrates the power of the singular
perturbation approach in obtaining information on the analytical solutions of
the semiconductor equations as well as in the construction and analysis of
numerical methods, particularly as far as grid construction and error

estimates are concerned.
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2. SINGULAR PERTURBATION ARALYSIS

As shown by Van Roosbroeck (1950) the equations describing potential
distribution, carrier and current-distributions in a semiconductor in the two~-

dimensional static case are

(2.1) €Ay = q(n - p - C) (Poisson's equation)

(2.2) Jn - -q(unn grad ¢ - Dn grad n) (electron current relation)
(2.3) Jp = -q(upp grad ¢ + Dp grad p) (hole current relation)
(2.4) div " qrR(n,p) (electron-continuity equation)

(2.5) daiv Jp = ~qR{n,p) (hole-continuity equation)

for (x,y) e qQ C n? (wvhere Q 1is a bounded, convex domain representing the
device geometry) subject to Dirichlet boundary conditions on Pc (Ohmic
contacts) and homogeneous Neumann boundary conditions for ¥,n,p on Pi
(isolating boundaries) with 234 = rc + ri. Also Dirichlet boundary conditions
for J = Jn + J_  and oxide-semiconductor interface conditions can be desired
for the simulation of certain devices.

However, the exact formulation of the boundary conditions isg not
necessary for our purposes since we only investigate internal layer
phenomena. The numerical and analytical treatment of boundary layers is

completely analgous.

We take the Shockley-Read-Hall (SRH)-thermal recombination term

n-n2
P - Ny

{(2.6) R(n,p) = .
tp(n + ni) + tn(p + ni)

In order to model high-injection conditions, the SRH-term has to be
supplemented by more complicated generation-recombination terms (see Schitz et

al. (1981)). We also assume the validity of Rinstein's relation

T

(2.7) Dn - unU . Dp - upUT .

e Y i
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For simplicity we assuwe that D, and ¥ _,U4 are constants. In ‘reality’

DP np
they are weakly varying functions of n,p, grad ¥ and of the doping profile.
This does not influence the following singular perturbation analysis.

An existence theorem for (2.1)-(2.5) under simplifying assumptions on the
boundary data and on the device geometry is given by Mock (1974). novmi, no
qualitative information on the solutions can be obtained from this theorem.

Let £ Dbe the characteristic length of the device under investigation
(for example the length of a diode).

The following scaling is basic for the singular perturbation approach

(208) * -‘L, n --i-!' P -E' D --S-

8 U, s g "8 g ¢

lJn I ‘n -’2
(2.9) g ==L g =a—B., 4 =2 4 =

" pa Ps D g Up Py Uy

n P

where C 3= max lc(x,y)| and
(x,y)eqnn
- X . 4

(2.10) x. Iy y' i

Then (2.1)-(2.5) reads, after dropping the subscript =

(2.11) 3¢ = n - p - D(x,y,A)
(2.12) Jn = ~ngrad ¢y + grad n
(2.13) Jp = ~p grad ¢ - grad p
(2.14) atv 3_ = 8 8(n,p, YN
(2.15) div Jp - -BPS(n,p.Yl)
with

(2.16) 3 - (;2)2 - :;r-..'o V- -;5—1'. 8 = DJ;-. 8 = -D'f,—
g T amn P PP
and

R g R SN e
e v RIS TNAL




.

O S I

-

np - ‘A’
(2.17) 8(n,p,Y\) = _.P__L._.z.
n+p+ 212A

(2.11)={2.15) holds in the domain A = {(x,y)|(x,%y) € Q} and is subjected
to (the scaled) boundary conditions. Ab is the minimal Debeye length. When

are not constant D ,D, in (2.9) have to be substituted by

P

n,Dp with Dn,p -

D
uncP' n,p

‘characteristic' values 0 o(D, ). The scaled continuity

n,p
equations (2.12), (2.13) have to be changed accordingly.

In the sequel we also need the scaled Boltzmann statistics

2 V¢

$-v
n = sz e " 2

2
e P™ Y Xe .

Now assume we deal with a silicon device with characteristic length

L= 2.5 x 1073

cm and the doping is such that g=10"cm3, Then, at
approximately room temperature T ~ 300K we compute the following numerical

values

2 6 2

A = 0,4 x10°°, ¥ wo.25, By ™ B, =0.25.
Obviously A << 1 holds while the other constants are 0(1). Also, the
larger the maximal doping gets (in absolute value), the smaller ) gets. Por
example, & = 102%cm™3 gives 32 = 0.4 x 1072, Therefore, for sufficiently
large doping, we can regard (2.11)-(2.15) as singularly perturbed elliptic
system with singular perturbation parameter A = T

Markowich et al. (1982b) pointed out that the singular perturbation
analysis requires that the intrinsic number n; is much less than the maximal
doping & and that C(x,y)/& is much larger than A2 except in domains of
small area (i.e. layers) and, of course that ) is sufficiently small.

In order to analyze internal layer phenomena we assume that the scaled

doping profile D which is assumed to be smooth has an internal layer along

the y-axis:
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D(x,y,A) = B(x,y) + D[gx,y) + 0(A) .

5, D have a jump discontinuity across the y-axis, i.e.

(2.18) lim D(x,y) # lim D(x,y)s Um D(3,y) #1im b(F,y)
x>0+ xX+0~- x+0+ x+0-

for all y for which (0,y) € A and
x

PS -C |-|

(2.19) ID(%,y)l <c,e 2°A

holds for some conatants <, >0, c, > 0 independent of x,y,A.

Physically this represents a vertical pn-junction along the y-axis. If

D £ 0 then the junction is abrupt, if (2.19) holds with c1 #0 then D |is

assumed to be continuous and the junction is exponentially graded.
We use a vertical junction because this heavily simplifies the following
Later on we state the generalization to curved junctions.

analysis.

We expect the internal layer in the doping to cause layers in the

dependent variables and employ the ‘ansatz'

(a) Vix,y,A) = Ux,y) + ;G,y) + ene
(b) n(x,y,A) = n(x,y) + ;(-’i,y) + e
(2.20) (@  plxy,M = Bixey) + pGiy) + .o
(@ 3y, =T oy + 3 (Ky) v
(e) I (x¥,N) = 3p(x,y) + Sp(§,y) + ees

where the dots denote a power series in ) starting with the 0(A) term.
The functions marked with ' ~ ' are independent of ) and denote the
reduced solutions, the functions marked with '“' are the layer terms which
x

are defined for 1T = ) € (-»,») and all y in the device.

The layer terms are supposed to decay away from both sides of the

junction
-Qu
—— T
. R T S i 3 ‘T.“t:"';.‘ . £
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(2.21) (a) Yg=,y) = nlz=,y) = plze,y) = 0
(2.21)(b) 3,y = 3 (smy) =0 .
Now we insert the expansions (2.20) into the semiconductor equations (2.11)-
(2.14).
Neglecting 0()) terms and evaluating away from the junction gives the

reduced problem

(2.22) 0O=n-p-D

(2.23) .'in = -n grad V + grad n

{2.24) 3p = -5 grad i - grad B (x,y) € A, x #0
(2.25) div Jn = BnS(n.p,O)

(2.26) div SP = -Bps(R,E,O)

The reduced solutions ;,B,i are discontinuous along x = 0 because D has

x
a jump discontinuity there. In the sequel we denote a vector a = (ay) e Rz.

a
Evaluating close to the junction, but to the left of x = 0 and comparing

0(%) terms gives the left layer problem

v
*.

(@ ¥ _=n-p-D

() m_= (n+RO=y)Y, =< T<O
(2.27) (c) 5, - -(p+ 5(0-,y));’.‘

(d) S:T =0

(e) 3;T =0

where we set £(0%) = 1lim f(x). Subscripts denote partial derivatives.
x+0¢
Analogously we obtain the right internal layer problem

-10=-

N e e .

WPy

e
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Lok

(a) va =n-p=-D
(B) = (n+ RO+,
(2.28) (€  py=-lp+plot,yy, 0<CTCm
(d) E:t =0
(e) 3;1 = 0

The decay of the layer terms and (2.27), (2.28)(4),(e) immediately imply that
(2.29) * =z
n P

holds. The current components normal to the junction have no layers.

£0

Because of the discontinuity of D we need interface conditions at
x = 0. These conditions are obtained from the (natural) assumption that the
solutions v,n,p,Jn,Jp of (2.11)=-(2.15) and grad ¢ are continuous along the
y-axis. This implies that the sum of the reduced and layer components of the

expansions (2.20) have to be continuous across the y-axis

(a)  ¥(0-,y) + W0=,y) = W0+,y) + PO+,¥)

(b)  B0-,y) + n(0-,y) = A(0+,y) + n(0+,y)

() 5(0-,3) + p(0=,y) = B(O+,y) + p(0+,y)
(2.30) (a) Fr0-,y) = T (0+,y)

(@  Fomp + 30-,y) = Fior,y) + For,y)

(£) %(o-,y) - 3;(0+,y)
(g) Si(o-,y) + J:(O-,y) - 3:(0¢,y) + J;(O'k,y)
and by comparing 0(%) terns

¥ (0-,y) = ¥ (0+,y) .

-t~

. . 'A_"‘- ;\l, _'{‘4“:‘
e B o -

PP




Integrating (2.27), (2.28)(b),(c) gives

- ( Ao+, y) (MY L gy, t> 0
. (2.31) n(t,y) =

L Ro- ™ gy, rco

r- -A
BP0+, y) (e WY L gy, T>0

(2.32) p(T,y) = |

‘5(0-,y)(e-“t'y) -1, T<O

and (2.30)(a),(b),(c) give the interface conditions for the reduced carrier

densities

(a) n{0+,y) = eﬁo*'y)-“o-’y) n(0-,y)

i (2.33)

i&o-,y)-‘iﬁ(o*,y)

(b) plo+,y) = e plo-,y)

The layer jumps of the carrier densities depend exponentially on the voltage
drop accross the junction.
The reduced problem (2.22)-(2.26) can be written as nonlinear elliptic

system (after a lengthy, but simple calculation)

(2.34) (a) AV + —~ grad(2n ~ D) grad ¥ - ———
. 2n - D 2n = D
; B.-8 __
; - -2—2F s(n,n - D,0) = 0
: 2n - D

{2.34) (b) An - (grad n - -n — grad(2n - 5))grad [

2n - D
; - - em - - o -
- —=— (D~ (B ~ B)S(n,n - D,0)) = B S(n,n - D,0)
2n - D n P n

! for (x,y) € A, x # 0 subject to the Neumann and Dirichlet interface

! condition




(2.30) (e)  Blos,y) = «WOHYI=HO=Y) 2o,

(230) (&) B(ot,y) - Blos,g) = «MOTXITMONY) 20y | Fion,y)
(2.34) (@) B(0+,y)¥ (0+,y) = n_(0+,y) = n(0-,y)¥,(0=,y) - B _(0-,y)
(2.30)  (£) (R(0+,y) = D(O+,y))¥ (0+,y) + n_(0+,y) = D _(0+,y)

= (n(0-,y) = D(0-,y))¥,(0-,y) + n _(0~,y) - D (0-,y) .

(2.34)(e),(f) correspond to (2.30)(4),(£f).

The reduced problem has to be supplemented by boundary conditions (on
3A) derivod‘by setting A = 0 in the scaled boundary conditions for the
full problem (2.11)-(2.15) on Ohmic contacts and isolating boundaries and by

making boundary layer expansions on oxide-semi-conductor interfaces and
Schofsky contacts similarly to (2.20).

The reduced hole density P can be computed from the vanishing space
charge conditions (2,22).

The internal layer problem is obtained from (2.27), (2.28)(a), (2.31),

(2.32) . X

(2.35 (a) ;tt = ;(o+,y)e*("y) - B(o+,y)e'*(t'y’
- (B(0+,y) + D(T,y)), T>0

(2.35) (b) 3“ - E(o-,,,.a(r.y) _ S(o-,y;e';" T,y)
- (D(0-,y) + D(T,¥)), T<O

(2.35) (e) ¥(m,y) = $l-=,y) = 0

(2.35) (a) $0+,3) ~ $(0-,y) = WO-,y) - WO+, y)

(2.35) {e) ;1(0+,y) - ;t(o-,y) .

Markowich et al (1982b) showed that the ordinary second order differential




equation (2.35) possesses a unique solution ¢ which decays exponentially as

T+ te if (2.18), (2.19) holds. The derivatives fulfill
(2.36) I—-f (t,y)} € K.e
Y

where K,,K, > 0 only depend on i. The n -and p layer terms have to be

computed from (2.31), (2.32), they also decay exponentially as T + i,

After having shown the validity of the expansion (2.20) (see Markowich et
al. (1982b) for the one-dimensional problem) it follows that the solutions of
the reduced problem (which are smooth, alowly varying functions) approximate
the solutions of the semiconductor equations up to 0(1) outside the layer
region, which is a strip of width O0(A{2n A|) about the y-axis. Within this
internal layer the solutions vary rapidly, for example

;(°+IY) + ;’(EX'Y), x>0

V(X,Y.M -~ .
Wo-,y) + ¥Zy), x <o

There the solutions are, up to the reduced solution evaluated at the junction,

given by the exponentially decaying (in T = %) layer terms. The i~th

derivative in perpendicular direction to the junction fulfills

x
2t -1 Pl3!
(2.37) l_i. ¥x,y, M| € D.'A e
Ix

for Dy,D, > 0 independent of A while the tangential derivatives

(y-direction) are O0(1). The same gtatement holds for n and p, but not

for the 'slow' variables J:, Jx, which do not exhibit an internal layer.

They are - even close to the y~axis - approximated up to 0(1) by the

corresponding reduced solutions 3:,3;.

So far our analysis did not give any information on the tangential

components Jz. Jz except that they might exhibit layer behavior.

current




A complicated asymptotic analysis (given in Markowich (1982)), which uses

the substitution

(2.38) ' n=ek, p=oW
shows that
.0(0+,Y)(.“ ny) | 1)Gy(0.y)o T>0
(2.39) Tty = v
e PRI P R
o WOt ) mWTY) | 1);y(0.y), T>0
(2.40) J:“'Y) -

o VO=/¥) (U TY) | 1);y(o.y), T<O

where G,; denote the reduced solutions u,v (which are continuous across
x = 0 because of (2.33)). Therefore, if the tangential derivatives of the
scaled n and p quasifermi levels ‘h' ‘b at the junction do not vanish,
then the tangential current density components exhibit layer behavior.

All results immediately carry over to a horizontal junction by exchanging
the x and y coordinate, however a curved junction extremely complicates
the analysis. Therefore we only state the results, the proofs can be found in
Markowich (1982),

Assume that there is a curve T C A along which the (scaled) profile
D has a jump discontinuity (abrupt junction) or decays exponentially (as in
(2.19). Then, for points (x,y) sufficiently close to the junction we denote
by t(x,y) the closest oriented distance to ' (that means ¢t is positive

on one side of [ and negative on the other) and by s(x,y) =

(l,(x,y),lz(x,y)) the point on [ closest to (x,y) (see Figure 1).




layer

Pigure 1: ‘'Local Coordinates'

t_(x,y)
For (x,y) € T we call ;(x.y) - (tx(x ) the normal vector to I and
. -t (x,y) y Y . t(x
tix,y) = ( £ (x.y) the tangential vector and set T = -13‘21. It turns out
x .

that the asymptotic expansions (2.20) remain valid when x is substituted

by t(x,y) and y by s(x,y) in the layer terms. That means, the layer is
a strip of width O0(Al2n A|) about T (see Figure 1). The exponential decay
of the layer terms occurs in perpendicular direction to the junction. Both

partial derivatives are large if tx(x,y), ty(x.y) are nonzero, since:

~ t ~ t
- 3#(—,-) 30(—.3)
(a) 211%:2*51 ~ 3!%2‘11 +~% 3: £+ 3: s, + 0(1)

(2.41)

3 wGee)  aves)
(py Wy D) dpoey) 2N D, TN T 4,
3y 2y A Tt Syt TE o %k

-~

holds where ¢ and %¥ fulfill (2.36) with y substituted by s. The first

and the last terms on the right hand side of (2.41) are 0(1). Moreover

&
Jn';. Jp'n are continuous across the junction, while Jn'f, Jp'g' generally

have layers.

i s it ot . A




The current density components in normal direction have no layer, while 1
the tangential components may very well have one (depending on whether the

tangential derivative of the quasifermi levels vanish or not).

Details are given in Markowich (1982).
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3. THE BASIC DISCRETIZATION SCHEME

For the discretization of the (scaled) semiconductor equations (2.11)-
(2.15) we use a rectanqular grid G with grid sizes h1 in x~direction and
kj in y-direction. The grid points have coordinates (xi,yj) where
(3.1) (a) Xipg =% * hi' y3*1 - yj + kj
holds. The subscripts are chosen such that no gridline left of x = Xq and

below y = y, intersects AU 3., i runs from 0 to N and j from 0

to M.
The point (xi,yj) is called interior gridpoint if its four neighbors

(x1_1 le)l (xi+1le)l (xilyi',‘): (xilyj"1) are in A UV aA, otherwise it

is called exterior gridpoint.

In the sequel we denote the evaluation of a gridfunction f at

(xi,yj) by fij and we define

(3.1) (b) h=maxh,, k=max k, .
1 y 3

We use the standard five point formula for Poisson's equation (2.11)

v -V V.~V ¥ - ¥
2 2 i+1, i i i-1, 2 1,3+1 1
A2 ( + g SRS j) + 5 ( I+ >}

(a)
ht by i hy 3t K- ky
(3.2)
LT
197 Vi, 4-1
T K )] = myy = pyy = Dlxyg D

For the discretization of the current relations and the continuity equations

we need the function
(3.2) (b) v(z) = £ coth z .

We diascretize the current relations (2.12)-(2,15) by the following difference

scheme, obtained by ‘exponential interpolation':




— ———e - a

[
£
£
|
i
£

> Vi s T Mg Paen,g TNy Mieng T %y Paenyg Y 0y
(3.2)  (e) = y(— ) ., - h 2
1

nij N

3.2y (@) o= y(aiet Ty Pogen "0y Mgen T g P * My
* nij Y 2 kj kj 2

3.2) () oF . meyhettt T M3 Pien TPy Mer T g Preny * Py
) ° pij} Y 2 hi hi 2

v -%. P -p v - %.P +p
(3.2) () & _Y(_-l,j'*; Lj) 1534»; 49 _ 14 14 1,1+12 i3

pij 3 kj
2 x 2 Y
(3.2) (g) ———— (J - J* ) + (J - Y )
By *hicy L3 Paer,y Byt Rsey Ly Py 4

(3.2) (h) —2—(* -J° )+ —2 (¥ Y )
By *Bier Py Pig,y Xyt Ry Piy Py

= Sps(nu.Pij.l)

(3.2) only holds at interior gridpoints. For the actual computation of

solutions (3.2)(c),(d) and (3.2)(e),(£) are inserted into (3.2)(g) and

(3.2)(h) resp.

it is an easy exercise to show that the aifference scheme (3.2)(c)=(h) is
egquivalent to the Scharfetter-Gummel discretization (1969), however the form
given in (3.2) is wore convenient for the analysis. (3.2) is used by many
authors (see, for example Selberherr (1981) and Pranz et al. (1982)).

The boundary conditions are discretized in the norsal way (see Franz et

al. (1932) )o

o Rt LA K AR QT N - y T P




In the following sections we apply the results from the singular

perturbation analysis to construct grids which allow the global error of the

i : discretization scheme (3.2) to be less than a prescribed tolerance without

employing too many unnecessary grid points.

.
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4. AMALYSIS OF THE SCHARFETTER-GUWMKL (8G) WETHOD

The use of the function Y(z) as a factor multiplying the discrete
derivatives of n and p in (3.2)(c)~(f) appears striking at the first
glance. Originally the discretizations of the continuity equations were
obtained by using the exponential dependence of the corner densities on the
potential. However, by applying the exponential fitting methods described in
Section 5 for Poisson's equation it turns out that (up to small terms) the SG-
method is the only discretization of the continuity equation whose (discrete)
solutions have the same asymptotic properties (as A + 0+) as the
‘continuous’ solutions for every grid with h,k suff small but independent of

A.

Taylor series expansion shows that
(4.9) Y(z) = 1 + o(sz) as z + 0 .

Therefore, in regions where 01 3 differs only by O(h + k) from its four
neighboring values

i+1
layers), the aiscretization (3.2)(c)-(£) is up to O((h + X)2) equal to the

)3 0_"31 vi,j-o-‘l' 1’1',_1 (for example outside

standard-trapezoidal rule type-discretization of the current relations (with
Y £ 1) However, when 01 3 differs significantly from one its four
neighbors, the 8G-method behaves differently. To demonstrate this we apply

the method to the one-dimensional current relation and continuity equation

(4.2) (a) n' « ¥n = Jn ’ -1 €x € 1!
(4.2) (b) J;l =0, -1 £ x <1
(4.2) (c) n(=1) = n_, n(1) = n,

and assume that the potential ¢ = ¥(x,A) is a given function with an
exponential internal layer at x = 0 of width 0(Aifa Al) (see Pigure 2) as
given by the singular perturbation analysis of Section 2. This discouples the

semiconductor equations.
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Figure 2: Potential

,i The problem (4.2) can be thought of as modelling a pn-junction device where
the junction between n and p regions is at x » 0. For the sake of
. simplicity the recombination rate has been set to 0 which makes sense close
é ) to thermal equilibrium.
? A simple calculation gives the exact solution of (4.2)
? x
, (4.3) n(x,A) = VXAN-VELA, ane“"'” [ Ve Ny,
-1
! n+ - .*(1,*)‘*(’1,*)"-
i (4.4) Jn H ~
..-'g e"(‘lx) I Q-*(.'A,dl
; - !

At first we investigate the SG-method applied to the homogeneous initial value

problem

{(4.5) n' = y'n, x> =1, n(~1) = n_

which has the solution

——

V(x,A)=¥(~1,2) .

; (4.6) n(x,)\) = n_e

i
g
§ -
-



The SG~scheme for (4.5) reads

1+1 AT s U T T B T T
v~ ) = n, R, 2 ’

1)0)n-n.

(4.7)

We obtain the recursion

v -9
. : i+1 i
(4.8) Diyg = O 3 )n1

with the growth function
2z

(4.9) o(z) = e .
: Therefore the solution n; is given by
i
z , (4.10) n, = :E; o(!jﬂy-_‘l]n. . 0*1-*%_ . euxi,x)-«-a,x)n. .

o : The SG-method integrates the initial value problem (4.5) exactly on every

? grid. 1Internal layer jumps are resoclved accurately.
3 The trapezoidal rule, that is (4.6) with Y = 1, gives
v
(4.11) - .(_éil_..._i) n,
with
‘ 1+ 2
! (4.12) 0(2) 1 - g .

5 The solution of the trapezoidal rule is
o =1 ¥, =¥
O (4.13) n, = I 0(-1115——1)13_ .

i 1 j-o

P Now take a grid which is such that no gridpoint is placed inside the layer.
! 3 Let x, be the largest grid point 'left of' the layer, then X141 is already

| ‘right of' the layer.

“:’ ..n‘u ¥ ‘{w}hﬁz ‘
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Standard theory implies that

Y(x

A)=¥(=1,2)

(4.14) n, ~ n(xI) =g n

Il

holds if h is sufficiently small. From (4.13) and (4.14) we derive

P T T S T C FE VL R

(@.15)  n,, = n (1) ., o E—T)n_ .

#(x1+1,l)-w(-1,k)
A) = e n_ holds, nr4q only approximates

¥ - ¥ Wx_ . ., A)=%x_, )
-1115—-—5) approximates e I+ . However

¢(z) only approximates ezz if 2z is small. Since the internal layer jump

Since n(x1+1,

n( M ie ¢

X141’

of ¢y, Li.e. VP(x A) - W(xI,A), can be arbitrarily large, the trapezoidal

T+1’
rule generally does not resolve layer jumps, at least not for layer-ignoring
grids. It can be shown that the trapezoidal rule converges if and only if the
grid sizes inside the layer are small compared to A. No better performance
can be expected for the boundary value problem and for the two dimensioral
problem. This result was anticipated by J. Barnes (1976) who used arguments
based on physical grounds. The superiority of the SG-method for the initial
value problem is due to the exact resolution of internal laye:rs for arbitrary
grids.

We now turn to the boundary value problem (4.4). To solve the recursion
we observe that Jni £ A holds. Then (4.4)(a) has to be solved for general
A by using (4.10) and variation of constants. Then A and the second

integration constant have to be determined from the boundary conditions

(4.4)(c). We obtain

-24-
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O PRI AP I omrcs o . em. e e . e e o s s e
O(xi.l)-v(-1.l)
(a) n =g n +
1 -
(4.16)
i-1 Wix, ,A)=¥(x, . .,A) Wx,.,A) - ¥(x_,2A)
+ 1 3 he i (2 3 ]
j=0 "y 3
- ‘0(1:X)-¢(-1.X)n+
(4.16) (b) J 2
l'l1 N=1 *‘1IA)-*(xj+1’lx) "(xt.llx)'*(xﬂx)
] o hyw(— 22—
3=0
where
(4.17) w(z) = e* 2223_5

holds. The structure of the discrete solution is analogous to the structure
of the continuous solution as given by (4.3), only the integrals are
approximated by sums.

Standard analysis shows that

X
J J=-1 =¥ v -V -
(4.18) | [ VB Mg T o ""hjw(-""—‘{—i)l < Kh

xI =1

holds if the layer of ¢ is not in [xI,xJ]. Since the width of the layer is
0(A{2n A]) we obtain the uniform convergence estimate
(4.19) max (In, - n(x,, M) + |3 =3 |) <cth + Altn A|)

0<i<N i i n ni

for an arbitrary mesh. If the mesh sizes outside the layer are constant, then
h can be substituted by ;2. The constant ¢ only depends on upper bounds
for n,V and on bounds of derivatives of n and ¥ up to order three
outside layers.

The estimate (4.19) carries over to the hole continuity equation when

n is substituted by p.

T e
L_" .
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Similar results hold for the problem with nonzero recombination rate and
for the two dimensional problem. We do not present the proofs here since they
require a large technical apparatus.

The estimate (4.19) implies that the error contribution of the
discretization of the continuity equations only depends on the maximal grid
sizes and on the singular perturbation parameter, but not on the mesh inside

the layer.

Actually, this estimate can be refined, such that the right hand side of

(4.19) 1is substituted by

(4.20) cimax |2, .] + Altn A])
i3
i,3
where ‘13 is the local discretization error of the (two-dimensional) SG-
scheme and the maximum is only taken outside the strip of width O0(A]fn A|)
around the junction. ‘11 only depends on the 'local' mesh sizes
hi' hi—1' kj'kj-i and on derivatives up to order four of n and ¢ (the

local discretization error is computed by inserting the exact solution into
the SG scheme and by Taylor expansion (see next section)). Therefore the
local discretization error outside the layer can be equidistributed (see next
section) and the grid inside the layer may be chosen arbitrarily at least as
far as the continuity equations are concerned. In the next section we will
show that the grid inside the layer has to be constructed with respect to the

discretization of Poisson's equation.
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S. THE FIVE-POINT FORMULA
The scaled Boltzmann statistica
e | 2o J
(5.1) na= szzc n, p=- 12120 P
transform Poisson's equation to
v-¢ ¢ -V
(5.2) 2oy = v¥2% e P-eP ) - Dix,y, N, (x,y) @A,
The linearization of (5.2) with respect to ¥ along some function w is
given by
| of ) ¢ -V
(5.3) lZAv - Yzlz(. e e? - B(x,y,A), (x,y) e A
where E has a layer at the same position as D. The function
 of ] -V
! (5.4) a=v e "+e? )
\
is positive. Since discretizations of (5.3) (including boundary data) have to
be solved in every step of the (Newton) iteration of the five point formula
for (5.2) we investigate the five-point formula applied to the linear
singularly perturbed elliptic problem
(5.5) (a)  A%8w = a(x,y,Aw = K(x,y,A), (x,y) € A
subiect to mixed Neumann-Dirichlet boundary conditions on 3A, wvhere £
denotes the outward unit normal to 3A
(5.5) (b) w -w, X =0, (3N _U (30, = 3 .
|(3Mc ‘ a£|(aA)1 ’ c i
1 For simplicity we assume that the junction is abrupt, i.e. the function &
-
-

has a jump discontinuity along some curve I'C A and that E is independent
of A. Due to the built-in-potential which behaves like % #n -%;; outside a
pn-layer, the function a is uniformly in A bounded away tro: zero outside
the pn-layer. For simplicity we assume that a is uniformly bounded away

from zero sverywhere, that means

. .
o B I Ty iy
th . T i -
RPN, _—)
heau o
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(5.6) 0<acalxy) €3 (x,y) e AU 3A
with 'g,a independent of A. This assumption does not influence the results,
it only simplifies the technical approach needed for the analysis.
Because of (5.4) a(x,y,0) has a discontinuity along [. E and

a(*,*,0) are assumed to be continuous on that side of T for which £t > 0
holds (one sided continuity). The five-point formula applied to (5.5)(a)
reads

(5.7) ML v

13V19 © %13¥13
at interior grid points where Lij"ij is the discrete Laplace operator

- B(xidj)

2 e TS T S R T I IS
(5.8) LV, ™ (— - )
13"43 " h +h h, n_,
N Yo V5 L2 Bl S N V5 Wt 5.
kg + Ky kg kg

and uij = a(x PP

For the following analysis we take a rectangular device, that means A

ion

is the interior of a rectangle in the x,y plane. Neumann boundary
w - W

conditions can be discretized in the obvious way, i.e. -51;——-21 - vx(xo,yj)
W, -w 0
L. N1 -~ w (xN,y ) and analogously for « This leads to a first
PN-1 x* W Yy

order approximation of the boundary conditions. A second order approximation
can be obtained by 'mirror imaging', that is by introducing the exterior grid
points (x_1,yj). (xu+1,yj) for the approximation of vx(xo,yj). vx(x“,yj)

and analogously for w After arranging the gridpoints row-wise into the

Y'
grid vector Yh,k’ the linear system representing (S.7) and the boundary

conditions can be written as

(5.9) Ly " T




where (!h,k)ij - - ‘(xi”j) at interior gridpoints and (!h.k)ij is equal
to the boundary data at boundary gridpoints.

In Appendix A we prove that the system of difference equations (5.9) is
uniformly stable in A in the maximum norm for every grid, that means there
is a constant L independent of the grid and of A such that
(5.10) o (01 <L
holds, where we denote with [I+] the row sum norm of matrices as well as the
maximum norm of vectors.

Stability is one ingredient for convergence, the second is consistency.
Therefore, we insert the exact solution w, that is the solution of (5.5),

into the difference scheme. Taylor expansion up to the third term gives the

‘local discretization' error

2
L. = A Lij'(xi'yj) - a(xi.yj,l)w(xi,yj) + z(xi.yj)

i3
h2 2
2¢ 3 i 1-1
(S.11) = [ w(E, . ,y,) YY) S e Y
ax3 1773 3(h1 + h1_1) ax 21 j 3(h + h1 )
k2 k2
+ 2 WMy T v R -5 vixi i My) I 5
3y b | -1 oy b -
where 511,521 1'x1)3n1j “21 e (yj 1,yj). For (5.11) we assumed that

w is three times continuously differentiable in A. The local error
component from the first order discretization of the Neumann conditions at

vertical boundaries is

-
s
: h
- o 3 Mot 2
_ (5.12) L, =5 —=wi ,y), - = w Yy
: 03 "7 32 Ojl‘NjZaxZ;N‘lj
"
| \
L where Eo e (xo.x‘). Eu_1 e (xN.1.x"). Similar expressions hold at horiszontal
f boundaries. For general grids the five point formula is of first order, that
;
f «29=
e R T —————
o AaRETT B RS ot R
{ - . o g R o »
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means
(5.13) |zij| = o(h + k)
holds depending on bounds of the second and third derivatives of w. For a

equidistant grid, i.e. hi 2 h, kj 2 k, it can be shown by taking one more

term of the Taylor expansion that the local discretization error is of second
order in the interior.

We denote by w the vector with the grid values of the exact

ex

solution w (row wise ordered) and get

(5.14) Lh’k(k)(wex - 'h,k) = lh,k

where £ is the vector with components £ The stability estimate

h,k
(5.10) gives the global error estimate

i3°

(5.15) .wex - whkl < L'%,kl . »
Therefore, a prescribed global error tolerance & can be achieved if we
require that

L
holds for all i,3 (L is given explicitly in Appendix A).

s -
(5.16) le 1 <g=3

Our goal is now to determine grid sizes hy, kj such that the local
discretization error as given by (5.11), (5.12) is (approximately) equal to
3. This process is called equidistribution of the local error (see Markowich
and Ringhofer (1982)). The obtained equidistributing grid will be fine inside
layer regions (where the derivatives vary rapidly) and it will be coarse
outside layers (where the derivatives are 0(1)).

Equidistribution is normally done iteratively. That means solutions of
the digcretization scheme are computed on an initial mesh. Then the
derivatives in the local error are approximated for this initial solution and

a new grid is determined by equidistribution. A second approximation to the

solution is computed on this new grid and so on. The iteration is stopped by
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d
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' an appropriate criterion, e.g. when two consecutive solutions differ
insignificantly or when a solution satisfies the local error condition (5.16)
on the mesh it was computed. For the nonlinear problem the old solution is
used as initial guess for Newton's method for the computation of the new
solution (continuation method, see Ascher, Christiansen and Russell (1979)).
. We will now show that the singular perturbation analysis can be used to
obtain qualitative and quantitative information on the equidistributing grid
inside layers.
Analogously to Section 2 we derive that the solution of (%.5) has the
. form
1
i - -
; , (5.17) wi(x,y,2) = wix,y) + v(ﬁ’-‘-';\'-’-,-(x,y)) + 0(})
g . is where t,s are the local coordinates introduced in Section 2. The
function w is the solution of the reduced problem (5.5)
' - E({x,y)
’ (5.18) wix,y) = alx,y,0)
3 which is discontinuous along I and w(%,o) is the internal-layer term which
' solves the layer equation:
| (5.19) {a) Yer T c+(-)v, t> 0
i ~ ~
h ; (5.19) (b) w  =al(s)w, T<O
! (5.19) (c) w(0+,8) - w(0=,8) = ;_(l) - ;*(s)
i
o (5.19) (4) wt(0+.s) = v‘(o-,l)

where a (s),a_(s) and w,(8),w_(8) are equal to G and w resp. evaluated
. at the 'right’ and 'left' side of the junction I resp. and < -'ﬁ. The

! -

layer solution w then is

) 31~

AR R
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(5.19) (e) w(tT,s) =
y-(s)e o-(s) tc T< 0
where

v_(8) - v _(s)

(5.19) (£) vy+(s) =

w (8) - w_(s)
(5.19) (g) y=(s) = .
N 1T}

o-(s)

The agymptotic expansion (5.17) holds in any neighborhood of the junction T
in which no other layer occurs. We remark that layers can only be due to
rapid variation of E and to boundary conditions which are not fulfilled

asymptotically by w (boundary layers). Differentiation as in (2.41) gives

2 12 ey 1
(5.20) (a) =5 wix,y,\) = =5 == w(E3E5, stxyd e, + o 1_1)

ax AT a9t A

) 134 ey 1
(5.20) (b) -3 wix,y,2) = 51 w(-—x‘L, s(x,y) Je_ + of )

dy A oae Y A=t

inside the layer. Therefore the local discretization error (5.11) fulfills

h, 4+ h k + k
i -1 -1 7y
(5.21) 11,0 < const [ (——; e (e oy )1 + x |ty(xi,yj)|)

‘e
rexp(~ 3 ltlx y )+ by + 0y + ko +x,]

inside the layer, that is for |t(x,y)| < 7% |an Al.
a

Let us take the vertical junction x =0 at first, such that t = x,

s = (0,y)e (5.21) now reads




~bm- —
¥
2
| S /2
i - (5.22) |24} < const [~ exp(- 3 Ix 1)+ h_ +h + LR xj]
In order to satisfy the equidistribution condition (5.16) we choose
! /a
. (5.23) (a) h1 - c116 expf-x Ixil)
; (5.23) {b) kj - c26
!
i for lxil < . 1 Altn Al wvhere C,¢C, are 0(1) constants. Markowich and
a
Ringhofer (1982) showed that the number of grid points in x-direction on every
i gridline is
‘ x 1
é . , (5.24) ¥ayer ~ 0(6)
inside the layer. Due to the exponential grading of h; the number of
) gridpoints is independent of A. The number of y-gridlines is
j Yy ol
: (5.25) M) ayer o(3) -
3 Therefore, the equidistributing grid requires
* - N* Y = oL
(5.26) Nlayer Nlayer“layer 0 62)
meshpoints within the layer in order to achieve an 0(8) global error. The
' smallest gridsize hy within the layer is 0(AS§) and the largest is 0(4).
; All mesh sizes in y-direction can be chosen as 0(4).
: Equidistribution gives a comparable number of gridpoints for horizontal
"‘.
o . junctions and for horiszontal and vertical boundary layers.
e : We now assume that the junction I' is not aligned to the coordinate

é .l . system. As example we take the line

! (5.27) Tiy=x

-33=

; : such that ¢t(x,y) = fg (x = y) holds.
'
|
f
1

§
;
l
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(5.16) and (5.21) give bounds for the mesh sizes

¥
(5.28) (a) hy € c, A8 exp(—-x =3 Ix - yjl)
¥
- v2
(b) kj < sz6 exp( X 2 |x1 - yjl)
for Ix1 - yj' < 2 -é {tn Al. The number of meshpoints inside the layer is
2 /a
at least
1
(5.29) N = 0(—=) .
layer A62

Since the x and y-derivatives ingside the layer are large the mesh sizes
in x and y direction depend on A and therefore the number of meshpoints
inside the layer increases for constant 6§ as A decreases. Even assuming
that gridlines terminate outside layer regions, this leads to storage
requirements which virtually cannot be met. Normally A < 10-3, then an
accuracy bound § = 10-2 implies that (in the order of magnitude) 107
gridpoints have to be placed inside the layer. Including the continuity
equations linear systems of approximate dimension 3 X 107 would have to be
solved in every Newton step.

Therefore equidistribution has to be relaxed and we have to check whether

larger mesh sizes also lead to acceptable discrete solutions. To do so we

split the matrix Lh k(X) into
’
2 (1) (2)
(5.30) Lh’k(k) A Lh,k + Lh,k
where LL‘& represents the discrete Laplace operator (5.8) (the rows
’

corresponding to exterior gridpoints have only zero entries) and Lézz has
’

diagonal entries a at rows corresponding to interior gridpoints, it has

1]
diagonal entries 1 at rows corresponding to Dirichlet boundary points and the

rows corresponding to Neumann boundary points have two nonvanishing entries

representing the discrete boundary condition. Obviously Lézi is nonsingular
r
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and

(2)-1 1,.=_ =
, . (5.31) 'Lh,k 1 < max(1, F + h + k)
1 holds. Also we obtain
(1) 1 1
(5.32) ILh'kl < d(hz + kz)

1 -
max(1, =+ h + k
(5.33) )2+ ) ¢« ——2—

|

’ where 5 = min hi' k = min kj' Assume that
{

]

]

§

holds. Then the solution of (5.9) fulfills

(2)-1 A2 A2
S (3.34) i ™ T fhgx t 0(G) * G)Y)
( or component wise
(5.35) "ij = ;(xion) + O(ho + h“ + ko + kH) + 0((%)2 + (%)2)

where w 1is the reduced solution of (5.5), given by (5.18). If -%,'f are

A

sufficiently small, the discrete solution approximates the reduced solution.

Since )\ < hi’ A« kj for all 1i,} is required the mesh is coarse inside the

layer, however discretization errors which occur inside layer regions 4o not

spread out. Of course layers are not resolved at all by this mesh. By

choosing h = 0(8), k = 0(8) or by equidistributing the local error of the

continuity equation outside layer regions with error bounds the reduced

solution of the semiconductor equations can be resolved accurately for small

A on such a grid. The bound for the global error then is

06 + on + o(F)? + (2.

! s . Therefore even a constant coarse grid h1 H kj £h >> A can be chosen as

initial grid for the iteration procedure and the computed initial solution

will be close to the reduced solution.
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We now investigate the behaviour of the discrete solutions when the

condition %, % small is neglected.

It suffices to investigate the one-dimensional constant coefficient
version of (5.5)
(5.36) (a) Azw" = ow + E(x), -1 <x <1
(5.36) (b)  w(=1) = w(=1), w(1) = w(1)
where E has a jump discontinuity at x=0 and a> 0. w= - % is the
reduced solution. Therefore no boundary layers occur, only an internal layer
at x = 0.

The one-dimensional finite difference analogue to (5.7), (5.8) on the

constant grid with h, = h = % is

i
2
(5.37) (a) ¢ (wi+1 - 2wi + "1-1) =w - E(xi)
(5.37) (b)) v, = wi=1), vy = w(1)
with
A
(5.38) o=7

We regard (5.37) as two-step recursion. The characteristic equation is
(5.39) il -ar+ ) -ar=0.

The roots of (5.39) are

212 + a+ /4002 + uz

(5.40) (a) r.(¢) = > 1
+ 2’2
2 [z . 2
(5.40) (b)  r_(4) =2 r8c 2“* 2,
2¢

An easy calculation gives

(5.41) (a) 1im r+(0) = 4o, lim r+(¢) =1, r+(¢) + monotonically as ¢ + ®
0+

(5.41) (b) 1lim r_(¢4) = 0, lim r‘.(ﬂ =1, r (¢ ¢ monotonically as ¢ * =,
0+ L aged

=36~

e et e e
Y

W b b .

e

L e i e ;' ‘: “ '
- ;‘f%;s::mmm*wkl- . L




mm«-mu.w.‘munﬁ o ke o oL e « - e —

The difference scheme (5.37) can be solved explicitly

N-1 i=1
| (5.42) w = r:-“a(N) + rivn - (1 r:-jx(xj) + 1 L jz(xj))
L ; 4n¢2 + 02 =i 3=0
where
‘ ~ NO\ ~ ~ -u
w. ~-rw v, -wr
; (5.43) ag) = E—=23, pan « 2N
; 1 - (= 1- ()
: +
' with
- . LA
, (5.44) (@)  wy = w(=1) + ) r, E(x,)
. 2, 2 j=0 3
4ad” + a
N-1
(5.44) b)) w, o= w(1) + e ] Mg
N 2. 2 3=0 3
4ad + a

; | holds. We take N = 2L such that x, =0 holds. For simplicity we assume

3 -1, x <0

(5.45) (a) E(x) =
1, x>0

| Then, using (5.40), (5.41) we obtain the asymptotics

[ 1. 2 o™ +orh), 1<
a /F_*E——-“E + + =
(r, = 1)/ 4a¢” + d
(5.45)  (B) w =
o 1, 2 Yy oiry 4 0e?), 1o
-~ a 2. 2 * -
_ (1 -r_)/ 40’ + d

The first term on the right hand side of (5.45) is the reduced solution
%, x <0

f wix) = and the second is the discrete internal layer term
-1 %o

which decays away from x = 0 to both sides.

|

!
i
b |

i
u
E




Therefore, the structure of the discrete solution is analogous to the
structure of the continuous solution no matter what value ¢ = % takes.
However the 'discrete internal layer terms' are not close to the 'continuocus
internal layer terms' as given by (5.19) unless % is small or large.
Therefore the five point scheme is not uniformly (i.e. independently of 1)

convergent since the choice h * A creates a large global error. The

behaviour of the continuous and discrete solution for h = A s illustrated

by Figure 3.
XS Ty o
. i rl - A, y I ~
-1 1 “x
- - - e X - -
X X X—~ —x

Figure 3: Exact and discrete solution of the linearized

one-dimensional Poisson equation.

The discrete solution displays internal layer atructure. Large errors only
occur within the internal layer. The layer terms decay exponentially away

from the layer. Therefore the solution may be regarded as acceptable,

e o e e e e
e
A e




The situation for the two-dimensional problem is completely analogous.
The following grid construction strategy can be employed

(o) equidistribution outside layers

(B) ‘limited' equidistribution within layers ('limited' means that not

storage restrictions is allowed within each layer).

|

! .

i ' more than an a priori defined number of gridpoints depending on

]

: A discrete solution of the five point scheme, which qualitatively agrees with
1

the solution of the continuous problem and which agrees gquantitatively with

the continuous solution ocutside layers is obtained using the strategy (A),

(8).

! This however requires that gridlines are allowd to terminate outside

{ ’ layers. We now discuss the situation depicted in Figure 4.
i
‘ yj+1
y s
yj-l
: Xi-1 X Xj+1 Xj+2

Figure 4: A terminating line

- ) The yj-gridline terminates at x40 the point (*1+1'Yj) is no grid point.

We approximate the ‘'missing' x-difference gquotient by linear

i interpolation between the (j + 1)-st and (3 - 1)=st y level,
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h, A h, kg * kg h,

The right hand side of (5.46) is then substituted into Lij"ij as given

(5.8). The local error z:; introduced by (5.46) fulfills
3 .2
¥ n h
) 1 g Py £ .2 2
1244 < hy(h, * b ) G+ g+ Xy ) + 5 (kg + kg )
(5.47)
X
« ID_ul
3 [xi_1 'xi+1]x[yj"1 'Yj+1]
where
(5.48) DU = Jugeel + Mol ) + lu ol .

&
Missing y-derivatives are approximated analegously. The local error

contribution then is obtained by interchanging hi' kj in (5.47) and DXu is
obtained from Dju by interchanging x and y.

(5.47) implies that grid-size ratio restrictions have to be assumed in
order to get consistency.

For a terminating y-gridline we require

k k
(5.49) d¢e, <o
h k
i )
and for a terminating x~gridline
h h
(5.50) Lo, ¢
k h
3 i ]

vhere c is a moderate constant. Then (5.47) simplifies to
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and analogously for a terminating x-gridline.
The local error introduced by a terminating line is of first order.
Similarly the SG-scheme for the continuity equations is changed at
gridpoints where a line terminates.
Generally, lines are only allowed to terminate outside layer regions,

aince there D;u, Dgh have moderate values. The decision if and vhere a x

or y-gridline terminates is explained in Franz et al. (1982),

At last we show how the five point scheme can be adjusted such that the
resulting difference scheme is uniformly convergent., We modify the five point

scheme as follows:

2 "’I: Yier,3 T Vg Yig T Yicay
(5.52) 2 [td— (=l - =)
i i-1 i i=1

w

L VR WY YR TR R T
+ k k

- B(x,,y.)
Ky + Ky g 3 *5-1 173

O yvyy

vhere c:’, a{j will be determined by exponential fitting (see Doolan, Miller
and Schilders (1980)).

Ve set
(5.53) h, = oA ky = p‘j'x
and since our previous analysis showed that only mesh sites which are of the
order of magnitude of A can destroy convergence, we assume that px,pg are
independent of A (later on we will get rid of this restriction).

In order to derive a necessary criterion for d:), 6{1 t0o make the

scheme (5.52) uniformly convergent we assume
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(5.54) viy = w(xt,yj) +0(1) as A+ 0

and compute c 13 o{j from this assumption. Inserting the asymptotic

expansion (5.17) into (5.52) and taking the limit for A + 0 gives

w(f ) w(r v(t )-v(t
(5.55) 1lim [__L_(____.d__i___i.:l_l. __11___1___._1.1_1—)
M0 o+ ey, oy Pyt
. 2"{3 (v(t 4o1 78140 W(T 08 ) u(tu,-u)-w('c1 3-1"11’)
b 4
Py ¥ Py ) Pt
= lim u w(t '8
JUPRRES HRRES 13
t(xily )
where Tij = X , lij = a(xi,yj) holds. We now assume that the five
point star {(xi-1'Yj)'(xi'yj)'(x1+1'yj)'(xi'yj-1)'(xi'yj+1)} is entirely on

that side of the junction for which ¢t > 0 holds.

Since

(5.56) T = T(x

.3
41,9 et ¥y) T T R (Rery)e § € (xpaxyyy)

and similar expressions for 11-1,j' ti,j+1' 11"_1 hold, we set using

{5.19)(e)
-/a t (x Y /a, . px t (x, ,v.)
5.57) I (. 13 ° 1¥y) I Rl 1'%y
x x
0f + Piey Py Pi-1
20{1 (.-Jaij pgty(xi.yj)_1 ;- /;:; 6§ t (xi,yj))
+ —— - - al s
3
Py * P31 4 Pt

For some 0 < c:j <1 we set




v (9 + 9 I
L (5.58) (a) °Ij = x L e Tt
2(oxp(--n/¢:|1.j pitx(xi’yi” -1 ) exp(/a %y 91 1t (xi.yﬁ)
x x
Py Pyt
(5.58) (b) O{j ("y py )“ - c’. )a
. xp(~/a t (x,, 1 1~ exp(/a t (x N
2( 14 "yj x,Y ¥3)) - e b o1ty 1Yy
v j %_1
A % Consistency requires that lim de - lim o{j = {1 and therefore wve
i x x
& PyrPyq*0 AL
obtain by Taylor expansion

2 2

' _ e o2
f . (5.59) 4y ™ t(xi,yj 1 °1j ty(xi'yj)

since tz + tz = 1 holds.
x b4

(5.58) holds for all i,§ for which the five point star centered at

) (*1'73’ is on that side of the junction for which ¢ > 0 holds. On the {
! ‘ other side /a i3 has to be substituted by -',c:l. 5 In order to understand the
3 influence of o: 3 a{ 3 we take a constant grid h1 Eh, k 3 £ k such that
p: z p¥ p’; = p¥ holds. (5.58) gives for t < 0 and t > O:
(5.60) (a) °’1‘3 - o(uu), a{j = otv,,)
n2 JG(x ,y t "‘1'”3"‘
where o(u) = 2° “15 = 2 and
linhu
N lc(xi.y:) t (xi,y’)k
, vij - 27 .
i ,"'
s We easily get
- (5.61) otw) = 1 + 0(u?), u + 0, ofu) = 4u2e 2 44 Ju) v e

' Therefore the scheme (5.52) behaves (asymptotically) like the midpoint rule it

h<¢ A, k<< A, If h > A, k >> A the scheme behaves like

(5.62) oy 4vyy = Blxx,) ¢ ofe + e

Ly *gﬂﬂﬁ.:v " .

R - AR :
s R R g -
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where e 20, >0, > 0. Ths reduced solution w is resolved

.1j + !ij
(much more accurately by (5.60) than by the standard five point scheme.

13 £

These results hold locally for the variable mesh size came (5.58).
The modified scheme (5.52) is the five-point-formula analogue to the 8G~

method.

A problem which still has to be resolved is the modification of the five
point scheme at stars which are located at both sides of the junction (see

Figure 5).

Junction

Pigure 5: A 'Crossing' Star

In fact, it is for the abrupt junction formally not correct to write down the
five point scheme at (xi,yj) as depicted in Figure 5 since at least one
second order partial derivative of the solution is not continuous at the
junction. The correct approach is to substitute the five point formula at
such an ‘interface’ point by a discretized version of the interface condition

t=0-

t
(5.63) grad(w) (t"),
Y em0+

t
= grad V(t;)l .

at (xiyyj).

For the case of the vertical junction x = 0 exponential fitting gives

the discrete interface condition
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b 2215 B 5. YLd ~ L=t

(5.64) -
/a(0+,y,) /a(0-,y,)
1 - -xv(—T"L n) o 1- "‘P("""TL hys)

assuming that X - 0.
Then it can be shown that the modified midpoint rule is uniformly

convergent and that the global error is o(h) + 0(k) + 0(A) for each grid

(see Doolan, Miller and Schilders (1980) for one-dimensional problem).
The disadvantage of the modified scheme (5.52) is that the junction T

has to be known explicitly since o:j. o{j depend on tx.ty. For wmost

practical applications however the doping profile is graded and only given at

. t
discrete points. Then, since (tx) is parallel to the direction of steepest

y
descent (or growth) of the scaled doping profile D(x,y,A), the approximation

(tx) - Orad d
t

(5.65) ) " Toraa ot

can be used for the (numerical) determination of the fitting factors (5.58).
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APPENDIX A
Let bij denote the i-j-entry of the matrix ah'k(l) - th'k(l) where
D 4is the diagonal matrix which has =~1 at every entry representing an

interior gridpoint and 1 at every entry representing a boundary point. Then

(a) b €0, m#n

1 , if the mth row stands for a Dirichlet

boundary point
(b) Z bnn = aij . if the m-th row stands for the interior

n point (x1,yj)
o , if the m~th row stands for a Neumann
boundary point.

(c) Bh'k(l) is irreducible .

We take the mesh function

a + x1+yl
4y " B

wvhere a,B are chosen such that ’13 2¢>0 and max IQijl = 1 where
1,3
i,j runs through all interior and boundary points. a,8 only depend on A.

Let oh K denote the vector with components 015 {organized row wise). Then
’
ntj’ij . i (xi,yj) is an interior point.
(’h,k(l)’h,k)ij = ’ij , if (xi.yj) is a Dirichlet boundary point

% s 1if (xi,yj) is a Neumann boundary point.

From Doolan, Miller and Schilders (1980), Appendix A we derive that

-1 1 1

(A1) B, (M1 ¢ =

{ h,k min (B, (Mé ) 1
1,3

|

holds.
1 ~46~-
".‘ripvrw = TR R iy N A R e R R R PRI
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The right hand side of this estimate is independent of ) and of the

grid and can be taken as the stability constant L since the inverse of D
has norm one.

Ailu-o here that the scaling of the independent variables is such that

the rectangle 3A has the corner points (-lx,-ly). ux,-ty).(-lx,ly ) and

(2*,2Y). Then a simple calculation shows that the constants a,f can be

chosen such that

1

- X Y ——————
L= 2(2 *")+m1n(1.g)

holds. No better stability constant can be obtained from (A1l).

An analogous proof also holds for nonrectangular domains.
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